Pulsatile Lipid Vesicles under Osmotic Stress.

نویسندگان

  • Morgan Chabanon
  • James C S Ho
  • Bo Liedberg
  • Atul N Parikh
  • Padmini Rangamani
چکیده

The response of lipid bilayers to osmotic stress is an important part of cellular function. Recent experimental studies showed that when cell-sized giant unilamellar vesicles (GUVs) are exposed to hypotonic media, they respond to the osmotic assault by undergoing a cyclical sequence of swelling and bursting events, coupled to the membrane's compositional degrees of freedom. Here, we establish a fundamental and quantitative understanding of the essential pulsatile behavior of GUVs under hypotonic conditions by advancing a comprehensive theoretical model of vesicle dynamics. The model quantitatively captures the experimentally measured swell-burst parameters for single-component GUVs, and reveals that thermal fluctuations enable rate-dependent pore nucleation, driving the dynamics of the swell-burst cycles. We further extract constitutional scaling relationships between the pulsatile dynamics and GUV properties over multiple timescales. Our findings provide a fundamental framework that has the potential to guide future investigations on the nonequilibrium dynamics of vesicles under osmotic stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmotic Gradients Induce Bio-Reminiscent Morphological Transformations in Giant Unilamellar Vesicles

We report observations of large-scale, in-plane and out-of-plane membrane deformations in giant uni- and multilamellar vesicles composed of binary and ternary lipid mixtures in the presence of net transvesicular osmotic gradients. The lipid mixtures we examined consisted of binary mixtures of DOPC and DPPC lipids and ternary mixtures comprising POPC, sphingomyelin and cholesterol over a range o...

متن کامل

Protective Role of Arginine Against Oxidative Damage Induced by Osmotic Stress in Ajwain (Trachyspermum ammi) Seedlings Under Hydroponic Culture

Assessing the tolerance of medicinal plants is important for planting them in drought areas. Arginine is a growth regulator and its role in plants’ tolerance to environmental stresses such as drought has been investigated. To evaluate the protective effects of arginine against osmotic stress induced by polyethylene glycol in ajwain (Trachyspermum ammi) seedlings, an experiment was conducted as ...

متن کامل

Lipid and stress dependence of amphotericin B ion selective channels in sterol-free membranes.

The idea that amphotericin B (AmB) may not require sterols to form ion selective channels has recently been criticized on the grounds that egg phospholipids commonly used in experiments may contain small amounts of sterol which associate with AmB to form AmB/sterol pore channel structures. It was recently shown in this laboratory that modest osmotic stress can enhance the formation of AmB chann...

متن کامل

Crystalline protein domains and lipid bilayer vesicle shape transformations.

Cellular membranes can take on a variety of shapes to assist biological processes including endocytosis. Membrane-associated protein domains provide a possible mechanism for determining membrane curvature. We study the effect of tethered streptavidin protein crystals on the curvature of giant unilamellar vesicles (GUVs) using confocal, fluorescence, and differential interference contrast micros...

متن کامل

Unbinding Transition Induced by Osmotic Pressure in Re- lation to Unilamellar Vesicle Formation

– Small-angle X-ray scattering and phase-contrast microscopy experiments were performed to investigate the effect of the osmotic pressure on vesicle formation in a dioleoylphosphatidylcholine (DOPC)/water/NaI system. Multi-lamellar vesicles were formed when a pure lipid film was hydrated with an aqueous solution of NaI. On the other hand, uni-lamellar vesicles (ULVs) were formed when a lipid fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 112 8  شماره 

صفحات  -

تاریخ انتشار 2017